Abstract:Automated evidence-based misinformation detection systems, which evaluate the veracity of short claims against evidence, lack comprehensive analysis of their adversarial vulnerabilities. Existing black-box text-based adversarial attacks are ill-suited for evidence-based misinformation detection systems, as these attacks primarily focus on token-level substitutions involving gradient or logit-based optimization strategies, which are incapable of fooling the multi-component nature of these detection systems. These systems incorporate both retrieval and claim-evidence comparison modules, which requires attacks to break the retrieval of evidence and/or the comparison module so that it draws incorrect inferences. We present CAMOUFLAGE, an iterative, LLM-driven approach that employs a two-agent system, a Prompt Optimization Agent and an Attacker Agent, to create adversarial claim rewritings that manipulate evidence retrieval and mislead claim-evidence comparison, effectively bypassing the system without altering the meaning of the claim. The Attacker Agent produces semantically equivalent rewrites that attempt to mislead detectors, while the Prompt Optimization Agent analyzes failed attack attempts and refines the prompt of the Attacker to guide subsequent rewrites. This enables larger structural and stylistic transformations of the text rather than token-level substitutions, adapting the magnitude of changes based on previous outcomes. Unlike existing approaches, CAMOUFLAGE optimizes its attack solely based on binary model decisions to guide its rewriting process, eliminating the need for classifier logits or extensive querying. We evaluate CAMOUFLAGE on four systems, including two recent academic systems and two real-world APIs, with an average attack success rate of 46.92\% while preserving textual coherence and semantic equivalence to the original claims.
Abstract:Generative adversarial networks (GANs) are often billed as "universal distribution learners", but precisely what distributions they can represent and learn is still an open question. Heavy-tailed distributions are prevalent in many different domains such as financial risk-assessment, physics, and epidemiology. We observe that existing GAN architectures do a poor job of matching the asymptotic behavior of heavy-tailed distributions, a problem that we show stems from their construction. Additionally, when faced with the infinite moments and large distances between outlier points that are characteristic of heavy-tailed distributions, common loss functions produce unstable or near-zero gradients. We address these problems with the Pareto GAN. A Pareto GAN leverages extreme value theory and the functional properties of neural networks to learn a distribution that matches the asymptotic behavior of the marginal distributions of the features. We identify issues with standard loss functions and propose the use of alternative metric spaces that enable stable and efficient learning. Finally, we evaluate our proposed approach on a variety of heavy-tailed datasets.
Abstract:Several recent papers have discussed utilizing Lipschitz constants to limit the susceptibility of neural networks to adversarial examples. We analyze recently proposed methods for computing the Lipschitz constant. We show that the Lipschitz constant may indeed enable adversarially robust neural networks. However, the methods currently employed for computing it suffer from theoretical and practical limitations. We argue that addressing this shortcoming is a promising direction for future research into certified adversarial defenses.